Artist's rendering of an
asteroid a few kilometers across colliding with the Earth. Such an impact can release the equivalent energy of several million nuclear weapons detonating simultaneously;
Bali Khila, an eroded hill from the
Deccan Traps, which are another hypothesized cause of the K-Pg extinction event;
Complex CretaceousāPaleogene clay layer (gray) in the Geulhemmergroeve tunnels near
Geulhem, The Netherlands (finger is below the actual CretaceousāPaleogene boundary);
Wyoming rock with an intermediate claystone layer that contains 1,000 times more
iridium than the upper and lower layers. Picture taken at the San Diego Natural History Museum.
The CretaceousāPaleogene (KāPg) extinction event,[a] also known as the CretaceousāTertiary(KāT)extinction,[b] was a sudden
mass extinction of three-quarters of the
plant and
animalspecies on
Earth,[2][3] approximately 66 million years ago. The event caused the extinction of all non-avian
dinosaurs. Most other
tetrapods weighing more than 25 kilograms (55 pounds) also became extinct, with the exception of some
ectothermic species such as
sea turtles and
crocodilians.[4] It marked the end of the
Cretaceous Period, and with it the
Mesozoic era, while heralding the beginning of the
Cenozoic era, which continues to this day.
In the
geologic record, the KāPg event is marked by a thin layer of
sediment called the
KāPg boundary, which can be found throughout the world in marine and terrestrial rocks. The boundary clay shows unusually high levels of the metal
iridium, which is more common in
asteroids than in the
Earth's crust.[5]
As originally proposed in 1980[6] by a team of scientists led by
Luis Alvarez and his son
Walter, it is now generally thought that the KāPg extinction was caused by the impact of a
massive asteroid10 to 15 km (6 to 9 mi) wide,[7][8] 66 million years ago, which devastated the global environment, mainly through a lingering
impact winter which halted
photosynthesis in
plants and
plankton.[9][10] The impact hypothesis, also known as the
Alvarez hypothesis, was bolstered by the discovery of the 180 km (112 mi)
Chicxulub crater in the
Gulf of Mexico's
YucatĆ”n Peninsula in the early 1990s,[11] which provided conclusive evidence that the KāPg boundary clay represented debris from an
asteroid impact.[5] The fact that the extinctions occurred simultaneously provides strong evidence that they were caused by the asteroid.[5] A 2016 drilling project into the Chicxulub
peak ring confirmed that the peak ring comprised
granite ejected within minutes from deep in the earth, but contained hardly any
gypsum, the usual sulfate-containing sea floor rock in the region: the gypsum would have vaporized and dispersed as an
aerosol into the atmosphere, causing longer-term effects on the climate and
food chain. In October 2019, researchers reported that the event rapidly
acidified the oceans, producing
ecological collapse and, in this way as well, produced long-lasting effects on the climate, and accordingly was a key reason for the mass extinction at the end of the Cretaceous.[12][13]
Other causal or contributing factors to the extinction may have been the
Deccan Traps and other volcanic eruptions,[14][15]climate change, and sea level change. However, in January 2020, scientists reported that climate-modeling of the extinction event favored the
asteroid impact and not
volcanism.[16][17][18]
A wide range of terrestrial species perished in the KāPg extinction, the best-known being the non-avian
dinosaurs, along with many mammals, birds,[19] lizards,[20]insects,[21][22] plants, and all the
pterosaurs.[23] In the oceans, the KāPg extinction killed off
plesiosaurs and
mosasaurs and devastated
teleost fish,[24]sharks,
mollusks (especially
ammonites, which became extinct), and many species of plankton. It is estimated that 75% or more of all species on Earth vanished.[25] Yet the extinction also provided
evolutionary opportunities: in its wake, many groups underwent remarkable
adaptive radiationāsudden and prolific divergence into new forms and species within the disrupted and emptied ecological niches. Mammals in particular diversified in the
Paleogene,[26] evolving new forms such as
horses,
whales,
bats, and
primates. The surviving group of dinosaurs were avians, a few species of ground and water fowl, which radiated into all modern species of birds.[27] Among other groups, teleost fish[28] and perhaps lizards[20] also radiated.
Extinction patterns
Marine extinction intensity during the
Phanerozoic
The blue graph shows the apparent percentage (not the absolute number) of marine
animalgenera becoming extinct during any given time interval. It does not represent all marine species, just those that are readily fossilized. The labels of the traditional "Big Five" extinction events and the more recently recognised
Capitanian mass extinction event are clickable links; see
Extinction event for more details. (
source and image info)
The KāPg extinction event was severe, global, rapid, and selective, eliminating a vast number of species. Based on marine fossils, it is estimated that 75% or more of all species were made extinct.[25]
The event appears to have affected all continents at the same time. Non-avian
dinosaurs, for example, are known from the
Maastrichtian of North America,
Europe, Asia,
Africa, South America, and
Antarctica,[29] but are unknown from the Cenozoic anywhere in the world. Similarly, fossil pollen shows devastation of the plant communities in areas as far apart as
New Mexico,
Alaska,
China, and
New Zealand.[23]
Despite the event's severity, there was significant variability in the rate of extinction between and within different
clades. Species that depended on
photosynthesis declined or became extinct as atmospheric particles blocked sunlight and reduced the
solar energy reaching the ground. This plant extinction caused a major reshuffling of the dominant plant groups.[30]Omnivores,
insectivores, and
carrion-eaters survived the extinction event, perhaps because of the increased availability of their food sources. No purely
herbivorous or
carnivorousmammals seem to have survived. Rather, the surviving mammals and birds fed on
insects,
worms, and
snails, which in turn fed on
detritus (dead plant and animal matter).[31][32][33]
In
streamcommunities, few animal groups became extinct, because such communities rely less directly on food from living plants, and more on detritus washed in from the land, protecting them from extinction.[34] Similar, but more complex patterns have been found in the oceans. Extinction was more severe among animals living in the
water column than among animals living on or in the sea floor. Animals in the water column are almost entirely dependent on
primary production from living
phytoplankton, while animals on the
ocean floor always or sometimes feed on detritus.[31]Coccolithophorids and
mollusks (including
ammonites,
rudists,
freshwater snails, and
mussels), and those organisms whose
food chain included these shell builders, became extinct or suffered heavy losses. For example, it is thought that
ammonites were the principal food of
mosasaurs, a group of giant marine
reptiles that became extinct at the boundary.[35] The largest air-breathing survivors of the event,
crocodyliforms and
champsosaurs, were semi-aquatic and had access to detritus. Modern crocodilians can live as scavengers and survive for months without food, and their young are small, grow slowly, and feed largely on invertebrates and dead organisms for their first few years. These characteristics have been linked to crocodilian survival at the end of the Cretaceous.[32]
After the KāPg extinction event, biodiversity required substantial time to recover, despite the existence of abundant vacant
ecological niches.[31]
Microbiota
The
KāPg boundary represents one of the most dramatic turnovers in the
fossil record for various
calcareousnanoplankton that formed the
calcium deposits for which the Cretaceous is named. The turnover in this group is clearly marked at the species level.[36][37] Statistical analysis of
marine losses at this time suggests that the decrease in diversity was caused more by a sharp increase in extinctions than by a decrease in
speciation.[38] The KāPg boundary record of
dinoflagellates is not so well understood, mainly because only
microbial cysts provide a fossil record, and not all dinoflagellate species have cyst-forming stages, which likely causes diversity to be underestimated.[31] Recent studies indicate that there were no major shifts in dinoflagellates through the boundary layer.[39]
Radiolaria have left a geological record since at least the
Ordovician times, and their mineral fossil skeletons can be tracked across the KāPg boundary. There is no evidence of mass extinction of these organisms, and there is support for high productivity of these species in
southern high latitudes as a result of cooling temperatures in the early
Paleocene.[31] Approximately 46% of
diatom species survived the transition from the
Cretaceous to the Upper Paleocene, a significant turnover in species but not a catastrophic extinction.[31][40]
The occurrence of
planktonicforaminifera across the KāPg boundary has been studied since the 1930s.[41] Research spurred by the possibility of an impact event at the KāPg boundary resulted in numerous publications detailing planktonic foraminiferal extinction at the boundary;[31] there is ongoing debate between groups which think the evidence indicates substantial extinction of these species at the KāPg boundary,[42] and those who think the evidence supports multiple extinctions and expansions through the boundary.[43][44]
Numerous species of
benthic foraminifera became extinct during the event, presumably because they depend on organic debris for nutrients, while
biomass in the ocean is thought to have decreased. As the marine microbiota recovered, it is thought that increased speciation of benthic foraminifera resulted from the increase in food sources.[31] Phytoplankton recovery in the early Paleocene provided the food source to support large benthic foraminiferal assemblages, which are mainly detritus-feeding. Ultimate recovery of the benthic populations occurred over several stages lasting several hundred thousand years into the early Paleocene.[45][46]
There is significant variation in the fossil record as to the extinction rate of
marine invertebrates across the KāPg boundary. The apparent rate is influenced by a lack of fossil records, rather than extinctions.[31]
Ostracods, a class of small
crustaceans that were prevalent in the upper Maastrichtian, left fossil deposits in a variety of locations. A review of these fossils shows that ostracod diversity was lower in the Paleocene than any other time in the
Cenozoic. Current research cannot ascertain whether the extinctions occurred prior to, or during, the boundary interval.[47][48]
Approximately 60% of late-Cretaceous
Scleractiniacoral genera failed to cross the KāPg boundary into the Paleocene. Further analysis of the coral extinctions shows that approximately 98% of colonial species, ones that inhabit warm, shallow
tropical waters, became extinct. The solitary corals, which generally do not form reefs and inhabit colder and deeper (below the
photic zone) areas of the ocean were less impacted by the KāPg boundary. Colonial coral species rely upon
symbiosis with photosynthetic
algae, which collapsed due to the events surrounding the KāPg boundary,[49][50] but the use of data from coral fossils to support KāPg extinction and subsequent Paleocene recovery, must be weighed against the changes that occurred in coral ecosystems through the KāPg boundary.[31]
The numbers of
cephalopod,
echinoderm, and
bivalve genera exhibited significant diminution after the KāPg boundary. Most species of
brachiopods, a small
phylum of marine invertebrates, survived the KāPg extinction event and diversified during the early Paleocene.[31]
Rudist bivalves from the Late Cretaceous of the Omani Mountains, United Arab Emirates. Scale bar is 10 mm.
Except for
nautiloids (represented by the modern order
Nautilida) and
coleoids (which had already
diverged into modern
octopodes,
squids, and
cuttlefish) all other species of the
molluscan class Cephalopoda became extinct at the KāPg boundary. These included the ecologically significant
belemnoids, as well as the
ammonoids, a group of highly diverse, numerous, and widely distributed shelled cephalopods. Researchers have pointed out that the reproductive strategy of the surviving nautiloids, which rely upon few and larger eggs, played a role in outsurviving their ammonoid counterparts through the extinction event. The ammonoids utilized a planktonic strategy of reproduction (numerous eggs and planktonic larvae), which would have been devastated by the KāPg extinction event. Additional research has shown that subsequent to this elimination of ammonoids from the global biota, nautiloids began an evolutionary radiation into shell shapes and complexities theretofore known only from ammonoids.[51][52]
Approximately 35% of echinoderm genera became extinct at the KāPg boundary, although
taxa that thrived in low-latitude, shallow-water environments during the late Cretaceous had the highest extinction rate. Mid-latitude, deep-water echinoderms were much less affected at the KāPg boundary. The pattern of extinction points to habitat loss, specifically the drowning of
carbonate platforms, the shallow-water reefs in existence at that time, by the extinction event.[53]
Other invertebrate groups, including
rudists (reef-building clams) and
inoceramids (giant relatives of modern
scallops), also became extinct at the KāPg boundary.[54][55]
Fish
There are fossil records of
jawed fishes across the KāPg boundary, which provide good evidence of extinction patterns of these classes of marine vertebrates. While the deep-sea realm was able to remain seemingly unaffected, there was an equal loss between the open marine apex predators and the
durophagousdemersal feeders on the continental shelf. Within
cartilaginous fish, approximately 7 out of the 41 families of
neoselachians (modern
sharks, skates, and rays) disappeared after this event and
batoids (skates and rays) lost nearly all the identifiable species, while more than 90% of
teleost fish (bony fish) families survived.[56][57]
In the Maastrichtian age, 28
shark families and 13 batoid families thrived, of which 25 and 9, respectively, survived the KāT boundary event. Forty-seven of all neoselachian genera cross the KāT boundary, with 85% being sharks. Batoids display with 15%, a comparably low survival rate.[56][58]
There is evidence of a mass extinction of
bony fishes at a fossil site immediately above the KāPg boundary layer on
Seymour Island near
Antarctica, apparently precipitated by the KāPg extinction event;[59] the marine and freshwater environments of fishes mitigated the environmental effects of the extinction event.[60]
Terrestrial invertebrates
Insect damage to the fossilized leaves of
flowering plants from fourteen sites in North America was used as a proxy for insect diversity across the KāPg boundary and analyzed to determine the rate of extinction. Researchers found that Cretaceous sites, prior to the extinction event, had rich plant and insect-feeding diversity. During the early Paleocene, flora were relatively diverse with little predation from insects, even 1.7 million years after the extinction event.[61][62]
Terrestrial plants
There is overwhelming evidence of global disruption of plant communities at the KāPg boundary.[23][63][30] Extinctions are seen both in studies of fossil pollen, and fossil leaves.[23] In North America, the data suggests massive devastation and mass extinction of plants at the KāPg boundary sections, although there were substantial megafloral changes before the boundary.[23][64] In North America, approximately 57% of plant species became extinct. In high southern hemisphere latitudes, such as New Zealand and Antarctica, the mass die-off of flora caused no significant turnover in species, but dramatic and short-term changes in the relative abundance of plant groups.[61][65] In some regions, the Paleocene recovery of plants began with recolonizations by fern species, represented as a
fern spike in the geologic record; this same pattern of fern recolonization was observed after the
1980 Mount St. Helens eruption.[66]
Due to the wholesale destruction of plants at the KāPg boundary, there was a proliferation of
saprotrophic organisms, such as
fungi, that do not require photosynthesis and use nutrients from decaying vegetation. The dominance of fungal species lasted only a few years while the atmosphere cleared and plenty of organic matter to feed on was present. Once the atmosphere cleared, photosynthetic organisms, initially ferns and other ground-level plants, returned.[67] Just two species of fern appear to have dominated the landscape for centuries after the event.[68]
Polyploidy appears to have enhanced the ability of flowering plants to survive the extinction, probably because the additional copies of the genome such plants possessed allowed them to more readily adapt to the rapidly changing environmental conditions that followed the impact.[69]
Fungi
While it appears that many fungi were wiped out at the K-Pg boundary, it is worth noting that evidence has been found indicating that some fungal species thrived in the years after the extinction event. Microfossils from that period indicate a great increase in fungal spores, long before the resumption of plentiful fern spores in the recovery after the impact. Monoporisporites and
hypha are almost exclusive microfossils for a short span during and after the iridium boundary. These
saprophytes would not need sunlight, allowing them to survive during a period when the atmosphere was likely clogged with dust and sulfur aerosols.[67]
The proliferation of fungi has occurred after several extinction events, including the
PermianāTriassic extinction event, the largest known mass extinction in Earth's history, with up to 96% of all species suffering extinction.[70]
Amphibians
There is limited evidence for extinction of amphibians at the KāPg boundary. A study of fossil vertebrates across the KāPg boundary in
Montana concluded that no species of amphibian became extinct.[71] Yet there are several species of Maastrichtian amphibian, not included as part of this study, which are unknown from the Paleocene. These include the frog Theatonius lancensis[72] and the
albanerpetontidAlbanerpeton galaktion;[73] therefore, some amphibians do seem to have become extinct at the boundary. The relatively low levels of extinction seen among amphibians probably reflect the low extinction rates seen in freshwater animals.[34]
Non-archosaurs
Turtles
More than 80% of Cretaceous
turtle species passed through the KāPg boundary. All six turtle families in existence at the end of the Cretaceous survived into the
Paleogene and are represented by living species.[74]
The rhynchocephalians were a widespread and relatively successful group of lepidosaurians during the early
Mesozoic, but began to decline by the mid-Cretaceous, although they were very successful in
South America.[75] They are represented today by a single genus (the Tuatara), located exclusively in
New Zealand.[76]
Kronosaurus Hunt, a rendering by Dmitry Bogdanov in 2008. Large marine reptiles, including
plesiosaurians such as these, became extinct at the end of the
Cretaceous.
The order Squamata, which is represented today by lizards, snakes and amphisbaenians (worm lizards), radiated into various ecological niches during the
Jurassic and was successful throughout the Cretaceous. They survived through the KāPg boundary and are currently the most successful and diverse group of living reptiles, with more than 6,000 extant species. Many families of terrestrial squamates became extinct at the boundary, such as
monstersaurians and
polyglyphanodonts, and fossil evidence indicates they suffered very heavy losses in the KāPg event, only recovering 10 million years after it.[20]
Non-archosaurian marine reptiles
Giant non-archosaurian
aquatic reptiles such as
mosasaurs and
plesiosaurs, which were the top marine predators of their time, became extinct by the end of the Cretaceous.[77][78][79] The
ichthyosaurs had disappeared from fossil records before the mass extinction occurred.[80]
Ten families of crocodilians or their close relatives are represented in the Maastrichtian fossil records, of which five died out prior to the KāPg boundary.[82] Five families have both Maastrichtian and Paleocene fossil representatives. All of the surviving families of
crocodyliforms inhabited freshwater and terrestrial environmentsāexcept for the
Dyrosauridae, which lived in freshwater and marine locations. Approximately 50% of crocodyliform representatives survived across the KāPg boundary, the only apparent trend being that no large crocodiles survived.[31] Crocodyliform survivability across the boundary may have resulted from their aquatic niche and ability to burrow, which reduced susceptibility to negative environmental effects at the boundary.[60] Jouve and colleagues suggested in 2008 that juvenile marine crocodyliforms lived in freshwater environments as do modern marine
crocodile juveniles, which would have helped them survive where other
marine reptiles became extinct; freshwater environments were not so strongly affected by the KāPg extinction event as marine environments were.[83]
Pterosaurs
Two families of pterosaurs,
Azhdarchidae and
Nyctosauridae, were definitely present in the Maastrichtian, and they likely became extinct at the KāPg boundary. Several other pterosaur lineages may have been present during the Maastrichtian, such as the
ornithocheirids,
pteranodontids, a possible
tapejarid, a possible
thalassodromid and a basal toothed taxon of uncertain affinities, though they are represented by fragmentary remains that are difficult to assign to any given group.[84][85] While this was occurring, modern birds were undergoing diversification; traditionally it was thought that they replaced archaic birds and pterosaur groups, possibly due to direct competition, or they simply filled empty niches,[60][86][87] but there is no correlation between pterosaur and avian diversities that are conclusive to a competition hypothesis,[88] and small pterosaurs were present in the Late Cretaceous.[89] At least some niches previously held by birds were reclaimed by pterosaurs prior to the KāPg event.[90]
Birds
Most
paleontologists regard birds as the only surviving dinosaurs (see
Origin of birds). It is thought that all non-avian
theropods became extinct, including then-flourishing groups such as
enantiornithines and
hesperornithiforms.[91] Several analyses of bird fossils show divergence of species prior to the KāPg boundary, and that duck, chicken, and
ratite bird relatives coexisted with non-avian dinosaurs.[92] Large collections of bird fossils representing a range of different species provide definitive evidence for the persistence of archaic birds to within 300,000 years of the KāPg boundary. The absence of these birds in the Paleogene is evidence that a mass extinction of archaic birds took place there.[19]
The most successful and dominant group of
avialans,
enantiornithes, were wiped out. Only a small fraction of ground and water-dwelling Cretaceous bird species survived the impact, giving rise to today's birds.[19][93] The only bird group known for certain to have survived the KāPg boundary is the Aves.[19] Avians may have been able to survive the extinction as a result of their abilities to dive, swim, or seek shelter in water and marshlands. Many species of avians can build burrows, or nest in tree holes, or termite nests, all of which provided shelter from the environmental effects at the KāPg boundary. Long-term survival past the boundary was assured as a result of filling ecological niches left empty by extinction of non-avian dinosaurs.[60] The open niche space and relative scarcity of predators following the K-Pg extinction allowed for adaptive radiation of various avian groups.
Ratites, for example, rapidly diversified in the early Paleogene and are believed to have convergently developed flightlessness at least three to six times, often fulfilling the niche space for large herbivores once occupied by non-avian dinosaurs.[27][94][95]
Non-avian dinosaurs
Tyrannosaurus was among the dinosaurs living on Earth before the extinction.
Excluding a few controversial claims, scientists agree that all non-avian dinosaurs became extinct at the KāPg boundary. The dinosaur fossil record has been interpreted to show both a decline in diversity and no decline in diversity during the last few million years of the Cretaceous, and it may be that the quality of the dinosaur fossil record is simply not good enough to permit researchers to distinguish between the options.[96] There is no evidence that late Maastrichtian non-avian dinosaurs could burrow, swim, or dive, which suggests they were unable to shelter themselves from the worst parts of any environmental stress that occurred at the KāPg boundary. It is possible that small dinosaurs (other than birds) did survive, but they would have been deprived of food, as herbivorous dinosaurs would have found plant material scarce and carnivores would have quickly found prey in short supply.[60]
The growing consensus about the endothermy of dinosaurs (see
dinosaur physiology) helps to understand their full extinction in contrast with their close relatives, the crocodilians. Ectothermic ("cold-blooded") crocodiles have very limited needs for food (they can survive several months without eating), while endothermic ("warm-blooded") animals of similar size need much more food to sustain their faster metabolism. Thus, under the circumstances of food chain disruption previously mentioned, non-avian dinosaurs died out,[30] while some crocodiles survived. In this context, the survival of other endothermic animals, such as some birds and mammals, could be due, among other reasons, to their smaller needs for food, related to their small size at the extinction epoch.[97]
Whether the extinction occurred gradually or suddenly has been debated, as both views have support from the fossil record. A study of 29 fossil sites in Catalan
Pyrenees of Europe in 2010 supports the view that dinosaurs there had great diversity until the asteroid impact, with more than 100 living species.[98] More recent research indicates that this figure is obscured by
taphonomic biases and the sparsity of the continental fossil record. The results of this study, which were based on estimated real global biodiversity, showed that between 628 and 1,078 non-avian dinosaur species were alive at the end of the Cretaceous and underwent sudden extinction after the CretaceousāPaleogene extinction event.[99] Alternatively, interpretation based on the fossil-bearing rocks along the
Red Deer River in Alberta, Canada, supports the gradual extinction of non-avian dinosaurs; during the last 10 million years of the Cretaceous layers there, the number of dinosaur species seems to have decreased from about 45 to approximately 12. Other scientists have made the same assessment following their research.[100]
Several researchers support the existence of
Paleocene non-avian dinosaurs. Evidence of this existence is based on the discovery of dinosaur remains in the
Hell Creek Formation up to 1.3 m (4 ft 3.2 in) above and 40,000 years later than the KāPg boundary.[101] Pollen samples recovered near a fossilized
hadrosaurfemur recovered in the
Ojo Alamo Sandstone at the
San Juan River in Colorado, indicate that the animal lived during the Cenozoic, approximately 64.5 Ma (about 1 million years after the KāPg extinction event). If their existence past the KāPg boundary can be confirmed, these hadrosaurids would be considered a
dead clade walking.[102] The scientific consensus is that these fossils were eroded from their original locations and then re-buried in much later sediments (also known as
reworked fossils).[103]
Choristodere
The
choristoderes (semi-aquatic
archosauromorphs) survived across the KāPg boundary[31] but would die out in the early
Miocene.[104] Studies on Champsosaurus' palatal teeth suggest that there were dietary changes among the various species across the KāPg event.[105]
Mammals
All major Cretaceous mammalian lineages, including
monotremes (egg-laying mammals),
multituberculates,
metatherians,
eutherians,
dryolestoideans,[106] and
gondwanatheres[107] survived the KāPg extinction event, although they suffered losses. In particular, metatherians largely disappeared from North America, and the Asian
deltatheroidans became extinct (aside from the lineage leading to Gurbanodelta).[108] In the Hell Creek beds of North America, at least half of the ten known multituberculate species and all eleven metatherians species are not found above the boundary.[96] Multituberculates in Europe and North America survived relatively unscathed and quickly bounced back in the Paleocene, but Asian forms were devastated, never again to represent a significant component of mammalian fauna.[109] A recent study indicates that metatherians suffered the heaviest losses at the KāPg event, followed by multituberculates, while eutherians recovered the quickest.[110]
Mammalian species began diversifying approximately 30 million years prior to the KāPg boundary. Diversification of mammals stalled across the boundary.[111]
Current research indicates that mammals did not explosively diversify across the KāPg boundary, despite the ecological niches made available by the extinction of dinosaurs.[112] Several mammalian orders have been interpreted as diversifying immediately after the KāPg boundary, including Chiroptera (
bats) and Cetartiodactyla (a diverse group that today includes
whales and dolphins and
even-toed ungulates),[112] although recent research concludes that only
marsupial orders diversified soon after the KāPg boundary.[111]
KāPg boundary mammalian species were generally small, comparable in size to
rats; this small size would have helped them find shelter in protected environments. It is postulated that some early monotremes, marsupials, and placentals were semiaquatic or burrowing, as there are multiple mammalian lineages with such habits today. Any burrowing or semiaquatic mammal would have had additional protection from KāPg boundary environmental stresses.[60]
In North American terrestrial sequences, the extinction event is best represented by the marked discrepancy between the rich and relatively abundant late-Maastrichtian
pollen record and the post-boundary fern spike.[63] A highly informative sequence of dinosaur-bearing rocks from the KāPg boundary is found in western North America, particularly the late Maastrichtian-age
Hell Creek Formation of
Montana.[113] Comparison with the older
Judith River Formation (Montana) and
Dinosaur Park Formation (
Alberta), which both date from approximately 75 Ma, provides information on the changes in dinosaur populations over the last 10 million years of the Cretaceous. These fossil beds are geographically limited, covering only part of one continent.[96]
The middleālate Campanian formations show a greater diversity of dinosaurs than any other single group of rocks. The late Maastrichtian rocks contain the largest members of several major clades: Tyrannosaurus, Ankylosaurus, Pachycephalosaurus, Triceratops, and Torosaurus, which suggests food was plentiful immediately prior to the extinction.[114]
Plant fossils illustrate the reduction in plant species across the KāPg boundary. In the sediments below the KāPg boundary the dominant plant remains are
angiosperm pollen grains, but the boundary layer contains little pollen and is dominated by fern spores.[115] More usual pollen levels gradually resume above the boundary layer. This is reminiscent of areas blighted by modern volcanic eruptions, where the recovery is led by ferns, which are later replaced by larger angiosperm plants.[116] A study of ossilized fish bones found at
Tanis in
North Dakota suggests that the Cretaceous-Paleogene mass extinction happened during the Northern Hemisphere spring.[117][118][119]
Marine fossils
The mass extinction of marine plankton appears to have been abrupt and right at the KāPg boundary.[120] Ammonite genera became extinct at or near the KāPg boundary; there was a smaller and slower extinction of ammonite genera prior to the boundary associated with a late Cretaceous marine regression. The gradual extinction of most inoceramid bivalves began well before the KāPg boundary, and a small, gradual reduction in ammonite diversity occurred throughout the very late Cretaceous.[121]
Further analysis shows that several processes were in progress in the late Cretaceous seas and partially overlapped in time, then ended with the abrupt mass extinction.[121] The diversity of marine life decreased when the climate near the KāPg boundary increased in temperature. The temperature increased about three to four degrees very rapidly between 65.4 and 65.2 million years ago, which is very near the time of the extinction event. Not only did the climate temperature increase, but the water temperature decreased, causing a drastic decrease in marine diversity.[122]
Megatsunamis
The scientific consensus is that the asteroid impact at the KāPg boundary left
megatsunami deposits and sediments around the area of the Caribbean Sea and Gulf of Mexico, from the colossal waves created by the impact.[123] These deposits have been identified in the La Popa basin in northeastern Mexico,[124] platform carbonates in northeastern Brazil,[125] in
Atlantic deep-sea sediments,[126] and in the form of the thickest-known layer of graded sand deposits, around 100 m (330 ft), in the Chicxulub crater itself, directly above the shocked granite ejecta. The
megatsunami has been estimated at more than 100 m (330 ft) tall, as the asteroid fell into relatively shallow seas; in deep seas it would have been 4.6 km (2.9 mi) tall.[127]
Fossils in sedimentary rocks deposited during the impact
Fossiliferous sedimentary rocks deposited during the KāPg impact have been found in the Gulf of Mexico area, including tsunami wash deposits carrying remains of a
mangrove-type ecosystem, evidence that after the impact water sloshed back and forth repeatedly in the Gulf of Mexico, and dead fish left in shallow water but not disturbed by scavengers.[128][129][130][131][132]
Duration
The rapidity of the extinction is a controversial issue, because some theories about its causes imply a rapid extinction over a relatively short period (from a few years to a few thousand years), while others imply longer periods. The issue is difficult to resolve because of the
SignorāLipps effect, where the fossil record is so incomplete that most extinct
species probably died out long after the most recent fossil that has been found.[133] Scientists have also found very few continuous beds of fossil-bearing rock that cover a time range from several million years before the KāPg extinction to several million years after it.[31]
The sedimentation rate and thickness of KāPg clay from three sites suggest rapid extinction, perhaps over a period of less than 10,000 years.[134] At one site in the
Denver Basin of
Colorado, after the KāPg boundary layer was deposited, the
fern spike lasted approximately 1,000 years, and no more than 71,000 years; at the same location, the earliest appearance of
Cenozoic mammals occurred after approximately 185,000 years, and no more than 570,000 years, "indicating rapid rates of biotic extinction and initial recovery in the Denver Basin during this event."[135] Models presented at the annual meeting of the
American Geophysical Union demonstrated that the period of global darkness following the
Chicxulub impact would have persisted in the
Hell Creek Formation nearly 2 years.[136]
In 1980, a team of researchers consisting of
Nobel Prize-winning physicist
Luis Alvarez, his son, geologist
Walter Alvarez, and chemists
Frank Asaro and
Helen Michel discovered that
sedimentary layers found all over the world at the CretaceousāPaleogene boundary contain a
concentration of
iridium many times greater than normal (30, 160, and 20 times in three sections originally studied). Iridium is extremely rare in
Earth's crust because it is a
siderophile element which mostly sank along with
iron into
Earth's core during
planetary differentiation. As iridium remains more abundant in most
asteroids and
comets, the Alvarez team suggested that an asteroid struck the Earth at the time of the KāPg boundary.[9] There were earlier speculations on the possibility of an
impact event, but this was the first hard evidence.[137]
This hypothesis was viewed as radical when first proposed, but additional evidence soon emerged. The boundary clay was found to be full of minute
spherules of rock, crystallized from droplets of molten rock formed by the impact.[138]Shocked quartz[c] and other minerals were also identified in the KāPg boundary.[139][140] The identification of giant
tsunami beds along the Gulf Coast and the Caribbean provided more evidence,[141] and suggested that the impact may have occurred nearbyāas did the discovery that the KāPg boundary became thicker in the southern United States, with meter-thick beds of debris occurring in northern New Mexico.[23]
Radar topography reveals the 180 km (112 mi)-wide ring of the
Chicxulub crater.
Further research identified the giant
Chicxulub crater, buried under
Chicxulub on the coast of
YucatĆ”n, as the source of the KāPg boundary clay. Identified in 1990[11] based on work by geophysicist Glen Penfield in 1978, the crater is oval, with an average diameter of roughly 180 km (110 mi), about the size calculated by the Alvarez team.[142]
In 2007, it was proposed that the impactor belonged to the
Baptistina family of asteroids.[144] This link has been doubted, though not disproved, in part because of a lack of observations of the asteroid and its family.[145] It was reported in 2009 that 298 Baptistina does not share the chemical signature of the KāPg impactor.[146] Further, a 2011
Wide-field Infrared Survey Explorer (WISE) study of reflected light from the asteroids of the family estimated their break-up at 80 Ma, giving them insufficient time to shift orbits and impact Earth by 66 Ma.[147]
Additional evidence for the impact event is found at the
Tanis site in southwestern
North Dakota,
United States.[148] Tanis is part of the heavily studied
Hell Creek Formation, a group of rocks spanning four states in North America renowned for many significant
fossil discoveries from the
Upper Cretaceous and lower
Paleocene.[149] Tanis is an extraordinary and unique site because it appears to record the events from the first minutes until a few hours after the impact of the giant
Chicxulub asteroid in extreme detail.[150][151] Amber from the site has been reported to contain microtektites matching those of the Chicxulub impact event.[152] Some researchers question the interpretation of the findings at the site or are skeptical of the team leader, Robert DePalma, who had not yet received his Ph.D. in geology at the time of the discovery and whose commercial activities have been regarded with suspicion.[153]
Effects of impact
Artistic impression of the asteroid slamming into tropical, shallow seas of the sulfur-rich
YucatƔn Peninsula in what is today
Southeast Mexico.[154] The aftermath of this immense asteroid collision, which occurred approximately 66 million years ago, is believed to have caused the
mass extinction of non-avian dinosaurs and many other species on Earth.[154] The impact spewed hundreds of billions of tons of sulfur into the atmosphere, producing a worldwide blackout and freezing temperatures which persisted for at least a decade.[154]
In March 2010, an international panel of 41 scientists reviewed 20 years of scientific literature and endorsed the asteroid hypothesis, specifically the Chicxulub impact, as the cause of the extinction, ruling out other theories such as massive
volcanism. They had determined that a 10-to-15-kilometer (6 to 9 mi) asteroid hurtled into Earth at Chicxulub on Mexico's YucatƔn Peninsula. The collision would have released the same energy as 100
teratonnes of TNT (420
zettajoules)āmore than a billion times the energy of the
atomic bombings of Hiroshima and Nagasaki.[5] The Chicxulub impact caused a global catastrophe. Some of the phenomena were brief occurrences immediately following the impact, but there were also long-term geochemical and climatic disruptions that devastated the ecology.[155][120][156]
The re-entry of ejecta into Earth's atmosphere included a brief (hours-long) but intense pulse of
infrared radiation, cooking exposed organisms.[60] This is debated, with opponents arguing that local ferocious fires, probably limited to North America, fall short of global
firestorms. This is the "
CretaceousāPaleogene firestorm debate". A paper in 2013 by a prominent modeler of
nuclear winter suggested that, based on the amount of soot in the global debris layer, the entire terrestrial
biosphere might have burned, implying a global soot-cloud blocking out the sun and creating an
impact winter effect.[155] If widespread fires occurred this would have exterminated the most vulnerable organisms that survived the period immediately after the impact.[157]
Aside from the hypothesized fire and/or impact winter effects, the impact would have created a dust cloud that blocked sunlight for up to a year, inhibiting photosynthesis.[120] Freezing temperatures probably lasted for at least three years.[156] At Brazos section, the sea surface temperature dropped as much as 7 °C (13 °F) for decades after the impact.[158] It would take at least ten years for such aerosols to dissipate, and would account for the extinction of plants and phytoplankton, and subsequently herbivores and their
predators. Creatures whose food chains were based on
detritus would have a reasonable chance of survival.[97][120]
The asteroid hit an area of carbonate rock containing a large amount of combustible hydrocarbons and sulphur,[159] much of which was vaporized, thereby injecting
sulfuric acidaerosols into the
stratosphere, which might have reduced sunlight reaching the Earth's surface by more than 50%, and would have caused acid rain.[120][160] The resulting acidification of the oceans would kill many organisms that grow shells of
calcium carbonate.[160] According to models of the
Hell Creek Formation, the onset of global darkness would have reached its maximum in only a few weeks and likely lasted upwards of 2 years.[136]
The river bed at the Moody Creek Mine, 7 Mile Creek / Waimatuku, Dunollie, New Zealand contains evidence of a devastating event on terrestrial plant communities at the CretaceousāPaleogene boundary, confirming the severity and global nature of the event.[63]
In 2016, a scientific drilling project obtained deep rock-
core samples from the
peak ring around the Chicxulub impact crater. The discoveries confirmed that the rock comprising the peak ring had been shocked by immense pressure and melted in just minutes from its usual state into its present form. Unlike sea-floor deposits, the peak ring was made of granite originating much deeper in the earth, which had been ejected to the surface by the impact.
Gypsum is a
sulfate-containing rock usually present in the shallow seabed of the region; it had been almost entirely removed, vaporized into the atmosphere. Further, the event was immediately followed by a megatsunami[d] sufficient to lay down the largest known layer of sand separated by grain size directly above the peak ring. The impactor was large enough to create a 190-kilometer-wide (120 mi) peak ring, to melt, shock, and eject deep granite, to create colossal water movements, and to eject an immense quantity of vaporized rock and sulfates into the atmosphere, where they would have persisted for several years. This worldwide dispersal of dust and sulfates would have affected climate catastrophically, led to large temperature drops, and devastated the food chain.[163][164]
Alternative hypotheses
Although the concurrence of the end-Cretaceous extinctions with the Chicxulub asteroid impact strongly supports the impact hypothesis, some scientists continue to support other contributing causes: volcanic eruptions, climate change, sea level change, and other impact events. The end-Cretaceous event is the only
mass extinction known to be associated with an impact, and other large impacts, such as the
Manicouagan Reservoir impact, do not coincide with any noticeable extinction events.[165]
Before 2000, arguments that the
Deccan Trapsflood basalts caused the extinction were usually linked to the view that the extinction was gradual, as the flood basalt events were thought to have started around 68 Mya and lasted more than 2 million years. The most recent evidence shows that the traps erupted over a period of only 800,000 years spanning the KāPg boundary, and therefore may be responsible for the extinction and the delayed biotic recovery thereafter.[166]
The Deccan Traps could have caused extinction through several mechanisms, including the release of dust and sulfuric aerosols into the air, which might have blocked sunlight and thereby reduced photosynthesis in plants. In addition, Deccan Trap volcanism might have resulted in carbon dioxide emissions that increased the greenhouse effect when the dust and aerosols cleared from the atmosphere.[167][168] The increased carbon dioxide emissions also caused acid rain, evidenced by increased mercury deposition due to increased solubility of mercury compounds in more acidic water.[169]
In the years when the Deccan Traps hypothesis was linked to a slower extinction, Luis Alvarez (d. 1988) replied that paleontologists were being misled by
sparse data. While his assertion was not initially well-received, later intensive field studies of fossil beds lent weight to his claim. Eventually, most paleontologists began to accept the idea that the mass extinctions at the end of the Cretaceous were largely or at least partly due to a massive Earth impact. Even Walter Alvarez acknowledged that other major changes may have contributed to the extinctions.[170]
Combining these theories, some geophysical models suggest that the impact contributed to the Deccan Traps.
These models, combined with high-precision radiometric dating, suggest that the Chicxulub impact could have triggered some of the largest Deccan eruptions, as well as eruptions at active volcanoes anywhere on Earth.[171][172]
Multiple impact event
Other crater-like topographic features have also been proposed as impact craters formed in connection with CretaceousāPaleogene extinction. This suggests the possibility of near-simultaneous multiple impacts, perhaps from a fragmented asteroidal object similar to the
ShoemakerāLevy 9 impact with
Jupiter. In addition to the 180 km (110 mi) Chicxulub crater, there is the 24 km (15 mi)
Boltysh crater in
Ukraine (65.17±0.64 Ma), the 20 km (12 mi)
Silverpit crater in the
North Sea (59.5±14.5 Ma) possibly formed by
bolide impact, and the controversial and much larger 600 km (370 mi)
Shiva crater. Any other craters that might have formed in the
Tethys Ocean would since have been obscured by the northward tectonic drift of Africa and India.[173][174][175][176]
Maastrichtian sea-level regression
There is clear evidence that sea levels fell in the final stage of the Cretaceous by more than at any other time in the Mesozoic era. In some Maastrichtian
stage rock layers from various parts of the world, the later layers are terrestrial; earlier layers represent shorelines and the earliest layers represent seabeds. These layers do not show the tilting and distortion associated with
mountain building, therefore the likeliest explanation is a regression, a drop in sea level. There is no direct evidence for the cause of the regression, but the currently accepted explanation is that the
mid-ocean ridges became less active and sank under their own weight.[31][177]
A severe regression would have greatly reduced the
continental shelf area, the most species-rich part of the sea, and therefore could have been enough to cause a marine mass extinction, but this change would not have caused the extinction of the ammonites. The regression would also have caused climate changes, partly by disrupting winds and ocean currents and partly by reducing the Earth's
albedo and increasing global temperatures.[121]
Marine regression also resulted in the loss of
epeiric seas, such as the
Western Interior Seaway of North America. The loss of these seas greatly altered habitats, removing
coastal plains that ten million years before had been host to diverse communities such as are found in rocks of the Dinosaur Park Formation. Another consequence was an expansion of
freshwater environments, since continental runoff now had longer distances to travel before reaching
oceans. While this change was favorable to freshwater
vertebrates, those that prefer marine environments, such as sharks, suffered.[96]
Multiple causes
Proponents of multiple causation view the suggested single causes as either too small to produce the vast scale of the extinction, or not likely to produce its observed taxonomic pattern.[96] In a review article, J. David Archibald and David E. Fastovsky discussed a scenario combining three major postulated causes: volcanism,
marine regression, and extraterrestrial impact. In this scenario, terrestrial and marine communities were stressed by the changes in, and loss of, habitats. Dinosaurs, as the largest vertebrates, were the first affected by environmental changes, and their diversity declined. At the same time,
particulate materials from volcanism cooled and dried areas of the globe. Then an impact event occurred, causing collapses in photosynthesis-based food chains, both in the already-stressed terrestrial food chains and in the marine food chains.
Based on studies at
Seymour Island in
Antarctica, Sierra Petersen and colleagues argue that there were two separate extinction events near the CretaceousāPaleogene boundary, with one correlating to Deccan Trap volcanism and one correlated with the Chicxulub impact.[178] The team analyzed combined extinction patterns using a new clumped isotope temperature record from a hiatus-free, expanded KāPg boundary section. They documented a 7.8±3.3 °C warming synchronous with the onset of Deccan Traps volcanism and a second, smaller warming at the time of meteorite impact. They suggest local warming may have been amplified due to the simultaneous disappearance of continental or sea ice. Intra-shell variability indicates a possible reduction in seasonality after Deccan eruptions began, continuing through the meteorite event. Species extinction at Seymour Island occurred in two pulses that coincide with the two observed warming events, directly linking the end-Cretaceous extinction at this site to both volcanic and meteorite events via climate change.[178]
Recovery and diversification
An artist's rendering of Thescelosaurus during the KāPg mass extinction. It survived by burrowing, but would soon die of starvation.
The KāPg extinction had a profound effect on the
evolution of life on Earth. The elimination of dominant Cretaceous groups allowed other organisms to take their place, causing a remarkable amount of
species diversification during the Paleogene Period.[26] The most striking example is the replacement of dinosaurs by mammals. After the KāPg extinction, mammals evolved rapidly to fill the niches left vacant by the dinosaurs. Also significant, within the mammalian genera, new species were approximately 9.1% larger after the KāPg boundary.[179]
Other groups also substantially diversified. Based on molecular sequencing and fossil dating, many species of birds (the
Neoaves group in particular) appeared to radiate after the KāPg boundary.[27][180] They even produced giant, flightless forms, such as the herbivorous Gastornis and
Dromornithidae, and the predatory
Phorusrhacidae. The extinction of Cretaceous lizards and snakes may have led to the evolution of modern groups such as iguanas, monitor lizards, and boas.[20] The diversification of crown group snakes has been linked to the iotic recovery in the aftermath of the K-Pg extinction event.[181] On land,
giant boid and enormous
madtsoiid snakes appeared, and in the seas, giant
sea snakes evolved. Teleost fish diversified explosively,[28] filling the niches left vacant by the extinction. Groups appearing in the Paleocene and Eocene epochs include billfish, tunas, eels, and flatfish. Major changes are also seen in Paleogene insect communities. Many groups of ants were present in the Cretaceous, but in the Eocene ants became dominant and diverse, with larger colonies. Butterflies diversified as well, perhaps to take the place of leaf-eating insects wiped out by the extinction. The advanced mound-building termites,
Termitidae, also appear to have risen in importance.[182]
It is thought that body sizes of placental mammalian survivors
evolutionarily increased first, allowing them to fill niches after the extinctions, with
brain sizes increasing later in the
Eocene.[183][184]
Evidence from the
Salamanca Formation suggests that biotic recovery was more rapid in the Southern Hemisphere than in the Northern Hemisphere.[185]
^The abbreviation is derived from the juxtaposition of K, the common abbreviation for the
Cretaceous, which in turn originates from the correspondent German term Kreide, and Pg, which is the abbreviation for the
Paleogene.
^Shocked minerals have their internal structure deformed, and are created by intense pressures as in nuclear blasts and meteorite impacts.
^A megatsunami is a massive movement of sea waters, which can reach inland tens or hundreds of kilometers.
Citations
^Ogg, James G.; Gradstein, F. M.; Gradstein, Felix M. (2004). A geologic time scale 2004. Cambridge, UK: Cambridge University Press.
ISBN978-0-521-78142-8.
^Muench, David; Muench, Marc; Gilders, Michelle A. (2000). Primal Forces. Portland, Oregon: Graphic Arts Center Publishing. p. 20.
ISBN978-1-55868-522-2.
^Labandeira, C. C.; Johnson, K. R.; et al. (2002). "Preliminary assessment of insect herbivory across the Cretaceous-Tertiary boundary: Major extinction and minimum rebound". In Hartman, J.H.; Johnson, K.R.; Nichols, D.J. (eds.). The Hell Creek formation and the Cretaceous-Tertiary boundary in the northern Great Plains: An integrated continental record of the end of the Cretaceous. Geological Society of America. pp. 297ā327.
ISBN978-0-8137-2361-7.
^
abJablonski, D.; Chaloner, W. G. (1994). "Extinctions in the fossil record (and discussion)". Philosophical Transactions of the Royal Society of London B. 344 (1307): 11ā17.
doi:
10.1098/rstb.1994.0045.
^Weishampel, D. B.; Barrett, P. M. (2004). "Dinosaur distribution". In Weishampel, David B.; Dodson, Peter; Osmólska, Halszka (eds.). The Dinosauria (2nd ed.). Berkeley, CA: University of California Press. pp.
517ā606.
ISBN9780520242098.
OCLC441742117.
^Gedl, P. (2004). "Dinoflagellate cyst record of the deep-sea Cretaceous-Tertiary boundary at Uzgru, Carpathian Mountains, Czech Republic". Special Publications of the Geological Society of London. 230 (1): 257ā273.
Bibcode:
2004GSLSP.230..257G.
doi:
10.1144/GSL.SP.2004.230.01.13.
S2CID128771186.
^Arenillas, I.; Arz, J. A.; Molina, E.; Dupuis, C. (2000). "An independent test of planktic foraminiferal turnover across the Cretaceous/Paleogene (K/P) boundary at El Kef, Tunisia: Catastrophic mass extinction and possible survivorship". Micropaleontology. 46 (1): 31ā49.
JSTOR1486024.
^MacLeod, N (1996). "Nature of the Cretaceous-Tertiary (KāT) planktonic foraminiferal record: Stratigraphic confidence intervals, SignorāLipps effect, and patterns of survivorship". In MacLeod, N.; Keller, G. (eds.). CretaceousāTertiary Mass Extinctions: Biotic and environmental changes. W.W. Norton. pp. 85ā138.
ISBN978-0-393-96657-2.
^Galeotti, S.; Bellagamba, M.; Kaminski, M. A.; Montanari, A. (2002). "Deep-sea benthic foraminiferal recolonisation following a volcaniclastic event in the lower Campanian of the Scaglia Rossa Formation (Umbria-Marche Basin, central Italy)". Marine Micropaleontology. 44 (1ā2): 57ā76.
Bibcode:
2002MarMP..44...57G.
doi:
10.1016/s0377-8398(01)00037-8.{{
cite journal}}: CS1 maint: uses authors parameter (
link) Retrieved 2007-08-19.
^Kuhnt, W.; Collins, E. S. (1996). "8. Cretaceous to Paleogene benthic foraminifers from the Iberia abyssal plain". Proceedings of the Ocean Drilling Program, Scientific Results. Proceedings of the Ocean Drilling Program. 149: 203ā216.
doi:
10.2973/odp.proc.sr.149.254.1996.
^Coles, G. P.; Ayress, M. A.; Whatley, R. C. (1990). "A comparison of North Atlantic and 20 Pacific deep-sea Ostracoda". In Whatley, R. C.; Maybury, C. (eds.). Ostracoda and Global Events. Chapman & Hall. pp. 287ā305.
ISBN978-0-442-31167-4.
^Brouwers, E. M.; de Deckker, P. (1993). "Late Maastrichtian and Danian Ostracode Faunas from Northern Alaska: Reconstructions of Environment and Paleogeography". PALAIOS. 8 (2): 140ā154.
Bibcode:
1993Palai...8..140B.
doi:
10.2307/3515168.
JSTOR3515168.
^Vescsei, A.; Moussavian, E. (1997). "Paleocene reefs on the Maiella Platform margin, Italy: An example of the effects of the cretaceous/tertiary boundary events on reefs and carbonate platforms". Facies. 36 (1): 123ā139.
doi:
10.1007/BF02536880.
S2CID129296658.
^Rosen, B. R.; TurnÅ”ek, D. (1989). Jell A; Pickett JW (eds.). "Extinction patterns and biogeography of scleractinian corals across the Cretaceous/Tertiary boundary". Memoir of the Association of Australasian Paleontology. Proceedings of the Fifth International Symposium on Fossil Cnidaria including Archaeocyatha and Spongiomorphs. Brisbane, Queensland (8): 355ā370.
^Ward, P. D.; Kennedy, W. J.; MacLeod, K. G.; Mount, J. F. (1991). "Ammonite and inoceramid bivalve extinction patterns in Cretaceous/Tertiary boundary sections of the Biscay region (southwestern France, northern Spain)". Geology. 19 (12): 1181ā1184.
Bibcode:
1991Geo....19.1181W.
doi:
10.1130/0091-7613(1991)019<1181:AAIBEP>2.3.CO;2.
^MacLeod, K. G. (1994). "Extinction of Inoceramid Bivalves in Maastrichtian Strata of the Bay of Biscay Region of France and Spain". Journal of Paleontology. 68 (5): 1048ā1066.
doi:
10.1017/S0022336000026652.
S2CID132641572.
^
abKriwet, Jürgen; Benton, Michael J. (2004). "Neoselachian (Chondrichthyes, Elasmobranchii) Diversity across the CretaceousāTertiary Boundary". Palaeogeography, Palaeoclimatology, Palaeoecology. 214 (3): 181ā194.
Bibcode:
2004PPP...214..181K.
doi:
10.1016/j.palaeo.2004.02.049.
^Patterson, C. (1993). "Osteichthyes: Teleostei". In Benton, M. J. (ed.). The Fossil Record. Vol. 2. Springer. pp. 621ā656.
ISBN978-0-412-39380-8.
^Noubhani, Abdelmajid (2010). "The Selachians' faunas of the Moroccan phosphate deposits and the K-T mass extinctions". Historical Biology. 22 (1ā3): 71ā77.
doi:
10.1080/08912961003707349.
S2CID129579498.
^Zinsmeister, W. J. (1 May 1998). "Discovery of fish mortality horizon at the KāT boundary on Seymour Island: Re-evaluation of events at the end of the Cretaceous". Journal of Paleontology. 72 (3): 556ā571.
doi:
10.1017/S0022336000024331.
S2CID132206016.
^Johnson, K. R.; Hickey, L. J. (1991). "Megafloral change across the Cretaceous Tertiary boundary in the northern Great Plains and Rocky Mountains". In Sharpton, V.I.; Ward, P.D. (eds.). Global Catastrophes in Earth History: An interdisciplinary conference on impacts, volcanism, and mass mortality. Geological Society of America.
ISBN978-0-8137-2247-4.
^Askin, R.A.; Jacobson, S.R. (1996). "Palynological change across the CretaceousāTertiary boundary on Seymour Island, Antarctica: environmental and depositional factors". In Keller, G.; MacLeod, N. (eds.). CretaceousāTertiary Mass Extinctions: Biotic and Environmental Changes. W W Norton.
ISBN978-0-393-96657-2.
^Archibald, J. D.; Bryant, L. J. (1990). "Differential CretaceousāTertiary extinction of nonmarine vertebrates; evidence from northeastern Montana". In Sharpton, V.L.; Ward, P.D. (eds.). Global Catastrophes in Earth History: an Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality. Special Paper. Vol. 247. Geological Society of America. pp. 549ā562.
doi:
10.1130/spe247-p549.
ISBN978-0-8137-2247-4.
^Estes, R. (1964). "Fossil vertebrates from the late Cretaceous Lance formation, eastern Wyoming". University of California Publications, Department of Geological Sciences. 49: 1ā180.
^Gardner, J. D. (2000). "Albanerpetontid amphibians from the upper Cretaceous (Campanian and Maastrichtian) of North America". Geodiversitas. 22 (3): 349ā388.
^O'Keefe, F. R. (2001). "A cladistic analysis and taxonomic revision of the Plesiosauria (Reptilia: Sauropterygia)". Acta Zoologica Fennica. 213: 1ā63.
^"The Great Archosaur Lineage". University of California Museum of Paleontology.
Archived from the original on 28 February 2015. Retrieved 18 December 2014.
^Company, J.; Ruiz-OmeƱaca, J. I.; Pereda Suberbiola, X. (1999). "A long-necked pterosaur (Pterodactyloidea, Azhdarchidae) from the upper Cretaceous of Valencia, Spain". Geologie en Mijnbouw. 78 (3): 319ā333.
doi:
10.1023/A:1003851316054.
S2CID73638590.
^Butler, Richard J.; Barrett, Paul M.; Nowbath, Stephen; Upchurch, Paul (2009). "Estimating the effects of sampling biases on pterosaur diversity patterns: Implications for hypotheses of bird / pterosaur competitive replacement". Paleobiology. 35 (3): 432ā446.
doi:
10.1666/0094-8373-35.3.432.
S2CID84324007.
^Mitchell, K.J.; Llamas, B.; Soubrier, J.; Rawlence, N. J.; Worthy, T. H.; Wood, J.; Lee, M. S. Y.; Cooper, A. (2014). "Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolution". Science. 344 (6186): 989ā900.
Bibcode:
2014Sci...344..898M.
doi:
10.1126/science.1251981.
hdl:2328/35953.
PMID24855267.
S2CID206555952 – via Web of Science.
^
abcdeDavid, Archibald; Fastovsky, David (2004).
"Dinosaur extinction"(PDF). In Weishampel, David B.; Dodson, Peter; Osmólska, Halszka (eds.). The Dinosauria (2nd ed.). Berkeley: University of California Press. pp. 672ā684.
ISBN978-0-520-24209-8.
^Ryan, M. J.; Russell, A. P.; Eberth, D. A.; Currie, P. J. (2001). "The taphonomy of a Centrosaurus (Ornithischia: Ceratopsidae) bone bed from the Dinosaur Park formation (Upper Campanian), Alberta, Canada, with comments on cranial ontogeny". PALAIOS. 16 (5): 482ā506.
Bibcode:
2001Palai..16..482R.
doi:
10.1669/0883-1351(2001)016<0482:ttoaco>2.0.co;2.
S2CID130116586.
^Evans, Susan E.; Klembara, Jozef (2005). "A choristoderan reptile (Reptilia: Diapsida) from the Lower Miocene of northwest Bohemia (Czech Republic)". Journal of Vertebrate Paleontology. 25 (1): 171ā184.
doi:
10.1671/0272-4634(2005)025[0171:ACRRDF]2.0.CO;2.
S2CID84097919.
^Goin, F. J.; Reguero, M. A.; Pascual, R.; von Koenigswald, W.; Woodburne, M. O.; Case, J. A.; Marenssi, S. A.; Vieytes, C.; VizcaĆno, S. F. (2006). "First gondwanatherian mammal from Antarctica". Geological Society, London. Special Publications. 258 (1): 135ā144.
Bibcode:
2006GSLSP.258..135G.
doi:
10.1144/GSL.SP.2006.258.01.10.
S2CID129493664.
^McKenna, M. C.; Bell, S. K. (1997). Classification of mammals: Above the species level. Columbia University Press.
ISBN978-0-231-11012-9.
^
abBininda-Emonds, O. R.; Cardillo M.; Jones, K. E., MacPhee, R. D.; Beck, R. M.; Grenyer, R.; Price, S. A.; Vos, R. A.; Gittleman, J. L.; Purvis, A. (2007). "The delayed rise of present-day mammals". Nature. 446 (7135): 507ā512.
Bibcode:
2007Natur.446..507B.
doi:
10.1038/nature05634.
PMID17392779.
S2CID4314965.{{
cite journal}}: CS1 maint: uses authors parameter (
link)
^Lawton, T. F.; Shipley, K. W.; Aschoff, J. L.; Giles, K. A.; Vega, F. J. (2005). "Basinward transport of Chicxulub ejecta by tsunami-induced backflow, La Popa basin, northeastern Mexico, and its implications for distribution of impact-related deposits flanking the Gulf of Mexico". Geology. 33 (2): 81ā84.
Bibcode:
2005Geo....33...81L.
doi:
10.1130/G21057.1.
^Kring, David A. (2007). "The Chicxulub impact event and its environmental consequences at the Cretaceous-Tertiary boundary". Palaeogeography, Palaeoclimatology, Palaeoecology. 255 (1ā2): 4ā21.
doi:
10.1016/j.palaeo.2007.02.037.
^Majaess, D. J.; Higgins, D.; Molnar, L. A.; Haegert, M. J.; Lane, D. J.; Turner, D. G.; Nielsen, I. (February 2009). "New constraints on the asteroid 298 Baptistina, the alleged family member of the K/T impactor". The Journal of the Royal Astronomical Society of Canada. 103 (1): 7ā10.
arXiv:0811.0171.
Bibcode:
2009JRASC.103....7M.{{
cite journal}}: CS1 maint: uses authors parameter (
link)
^Kaskes, P.; Goderis, S.; Belza, J.; Tack, P.; DePalma, R. A.; Smit, J.; Vincze, Laszlo; Vabgaecje, F.; Claeys, P. (2019). "Caught in amber: Geochemistry and petrography of uniquely preserved Chicxulub microtektites from the Tanis K-Pg site from North Dakota (USA)".
Large Meteorite Impacts VI 2019 (LPI Contrib. No. 2136)(PDF). Vol. 6. Houston, TX: Lunar and Planetary Institute. pp. 1ā2. Retrieved 11 April 2021.
^
abOhno, S.; et al. (2014). "Production of sulphate-rich vapour during the Chicxulub impact and implications for ocean acidification". Nature Geoscience. 7 (4): 279ā282.
Bibcode:
2014NatGe...7..279O.
doi:
10.1038/ngeo2095.
^Brannen, Peter (2017). The Ends of the World: Volcanic Apocalypses, Lethal Oceans, and Our Quest to Understand Earth's Past Mass Extinctions. Harper Collins. p. 336.
ISBN9780062364807.
^Keller, G.; Adatte, T.; Gardin, S.; Bartolini, A.; Bajpai, S. (2008). "Main Deccan volcanism phase ends near the KāT boundary: Evidence from the Krishna-Godavari Basin, SE India". Earth and Planetary Science Letters. 268 (3ā4): 293ā311.
Bibcode:
2008E&PSL.268..293K.
doi:
10.1016/j.epsl.2008.01.015.{{
cite journal}}: CS1 maint: uses authors parameter (
link)
^Mullen, L. (October 13, 2004).
"Debating the Dinosaur Extinction". Astrobiology Magazine. Archived from the original on June 25, 2012. Retrieved 2012-03-29.{{
cite journal}}: CS1 maint: unfit URL (
link)
^Mullen, L. (October 20, 2004).
"Multiple impacts". Astrobiology Magazine. Archived from the original on April 6, 2012. Retrieved 2012-03-29.{{
cite journal}}: CS1 maint: unfit URL (
link)
^Mullen, L. (November 3, 2004).
"Shiva: Another KāT impact?". Astrobiology Magazine. Archived from the original on December 11, 2011. Retrieved 2012-03-29.{{
cite journal}}: CS1 maint: unfit URL (
link)